Renal tubular epithelial cell apoptosis is associated with caspase cleavage of the NHE1 Na+/H+ exchanger.
نویسندگان
چکیده
Renal tubular epithelial cell (RTC) apoptosis causes tubular atrophy, a hallmark of renal disease progression. Apoptosis is generally characterized by reduced cell volume and cytosolic pH, but epithelial cells are relatively resistant to shrinkage due to regulatory volume increase, which is mediated by Na(+)/H(+) exchanger (NHE) 1. We investigated whether RTC apoptosis requires caspase cleavage of NHE1. Staurosporine- and hypertonic NaCl-induced RTC apoptosis was associated with cell shrinkage and diminished cytosolic pH, and apoptosis was potentiated by amiloride analogs, suggesting NHE1 activity opposes apoptosis. NHE1-deficient fibroblasts demonstrated increased susceptibility to apoptosis, which was reversed by NHE1 reconstitution. NHE1 expression was markedly decreased in apoptotic RTC due to degradation, and preincubation with peptide caspase antagonists restored NHE1 expression, indicating that NHE1 is degraded by caspases. Recombinant caspase-3 cleaved the in vitro-translated NHE1 cytoplasmic domain into five distinct peptides, identical in molecular weight to NHE1 degradation products derived from staurosporine-stimulated RTC lysates. In vivo, NHE1 loss-of-function C57BL/6.SJL-swe/swe mice with adriamycin-induced nephropathy demonstrated increased RTC apoptosis compared with adriamycin-treated wild-type controls, thereby implicating NHE1 inactivation as a potential mechanism of tubular atrophy. We conclude that NHE1 activity is critical for RTC survival after injury and that caspase cleavage of RTC NHE1 may promote apoptosis and tubular atrophy by preventing compensatory intracellular volume and pH regulation.
منابع مشابه
Regulação da sobrevida celular pelo antiporter NHE1 – bomba eletroneutra Na+/H+ Regulation of cell survival by Na/H exchanger-1
Na/H exchanger-1 (NHE1) is a ubiquitous plasma membrane Na/H exchanger typically associated with maintenance of intracellular volume and pH. In addition to the NHE1 role in electroneutral Na/H transport, in renal tubular epithelial cells in vitro the polybasic, juxtamembrane NHE1 cytosolic tail domain acts as a scaffold, by binding with ezrin/radixin/moesin (ERM) proteins and phosphatidylinosit...
متن کاملRegulation of cell survival by Na+/H+ exchanger-1.
Na(+)/H(+) exchanger-1 (NHE1) is a ubiquitous plasma membrane Na(+)/H(+) exchanger typically associated with maintenance of intracellular volume and pH. In addition to the NHE1 role in electroneutral Na(+)/H(+) transport, in renal tubular epithelial cells in vitro the polybasic, juxtamembrane NHE1 cytosolic tail domain acts as a scaffold, by binding with ezrin/radixin/moesin (ERM) proteins and ...
متن کاملRhoA and MAPK signal transduction pathways regulate NHE1-dependent proximal tubule cell apoptosis after mechanical stretch.
Mechanical deformation after congenital ureteral obstruction is traduced into biochemical signals leading to tubular atrophy due to epithelial cell apoptosis. We investigated whether Na(+)/H(+) exchanger 1 (NHE1) could be responsible for HK-2 cell apoptosis induction in response to mechanical stretch through its ability to function as a control point of RhoA and MAPK signaling pathways. When me...
متن کاملOxidative Stress-Activated NHE1 Is Involved in High Glucose-Induced Apoptosis in Renal Tubular Epithelial Cells
PURPOSE Diabetic nephropathy (DN) is a prevalent chronic microvascular complication of diabetes mellitus involving disturbances in electrolytes and the acid-base balance caused by a disorder of glucose metabolism. NHE1 is a Na⁺/H⁺ exchanger responsible for keeping intracellular pH (pHi) balance and cell growth. Our study aimed to investigate roles of NHE1 in high glucose (HG)-induced apoptosis ...
متن کاملPeroxisome proliferator-activated receptor alpha protects renal tubular cells from gentamicin-induced apoptosis via upregulating Na+/H+ exchanger NHE1.
Peroxisome proliferator-activated receptor alpha (PPARα) is a transcription factor which has been reported to inhibit gentamicin-induced apoptosis in renal tubular cells. However, the antiapoptotic mechanism of PPARα is still unknown. In this study, we found that PPARα overexpression induced Na+/H+ exchanger NHE1 expression in the rat renal tubular cells NRK-52E. Beraprost, a PPARα ligand, also...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 284 4 شماره
صفحات -
تاریخ انتشار 2003